	Katong (Convent End-Of-Year Examination 2010 Mathematics Paper 1	Sec 2E			
1	The r	nodel of a school is made to a scale of 1:50.				
	(a)	If the height of the building in the model is 35 cm, find the actual height metres.	t of the building in			
	(b)	The actual floor area of the hall is 250 m ² . Find the corresponding floor the model in cm ² .	area of the hall of			
		Answer: (a)	_			
		(b)	cm ² [2]			
. 2	(a)	If 7 men take 2 hours to consume 100 burgers, how long would it take 5 men to consume 80 burgers, assuming every man consumes the burgers at the same rate?				
	(b)	If y is inversely proportional to $(x^3 - 1)$ and $y = 28$ when $x = 2$, find when $x = 3$.	d the value of y			
		when $x = 3$.				
-						

Answer: (a) _____h__[2]

- 3. (a) Expand and simplify the expression 2x(3-2x)+(2x+3)(7-4x).
 - (b) Given that that ab = -6 and $a^2 + b^2 = 30$, find the value of $(a + b)^2$.

Answer: (a) [2]

(b) ____[2]

- 4 (a) Factorise completely 2(ab + cd) + 4bc + ad.
 - (b) Simplify $\frac{x^2 + 3x 10}{x^2 4}$.

Answer: (a) _____[2]

(b) _____[3]

CITIC TEACONG CONT.

Class:....

5. Solve the following equations

(a)
$$x^2 - 8x + 12 = 0$$
,

(b)
$$(2p+1)^2 = (p-2)^2$$
.

(b)
$$p = ____[2]$$

6. (a) Make x the subject of the formula
$$\frac{2x-3}{b} = \frac{x}{3y}$$
.

(b) Make p the subject of the formula
$$m = \sqrt{\frac{2 - p^2}{np^2}}$$

Answer: (a) [2]

(b) ______[2]

7. (a) Express the following as a single fraction in its simplest form.

$$\frac{c}{4c^2-9} + \frac{2}{2c-3}$$

(b) Solve the equation

$$\frac{x-2}{4} + \frac{5x+3}{3} = 8$$

Answer	(a)	[2	2]

(b)
$$x = [2]$$

8. Solve the following simultaneous equations

$$2x + 3y = 17,$$

$$6x - 5y = 9.$$

- 9 In the diagram DE is parallel to BC.
 - (a) Name two pairs of similar triangles.
 - (b) If DE = 8 cm, EF = 4.8 cm, AE = 10 cm and BC = 15 cm, calculate the lengths of BF and CE

Answer: (a) _____[2]

(b) BF = cm, CE = cm [2]

The volume of 2 similar cylinders are 250 cm³ and 54 cm³ respectively. Find the ratio of the area of the smaller cylinder to the area of the larger cylinder.

- The diagram below shows the graph of the straight line 2x + y = 4. 11
 - Complete the table of values for the equation $y = \frac{1}{3}x 3$. (a)

X	-3	0	6
у	-4		- 1

[1]

Draw the line $y = \frac{1}{3}x - 3$ on the graph below.

[1]

Solve the simultaneous equations 2x + y = 4, $y = \frac{1}{3}x - 3$ graphically. (c)

Ans: (c)
$$x =$$
 [1]

$$y = \underline{\hspace{1cm}} [1]$$

Class:....

- The diagram shows two straight lines: $l_1:4x+5y=2$ and l_2 . Find
 - (a) the coordinates of point A,
 - (b) the gradient of line l_1 ,
 - (c) the equation of line l_2 ,
 - (d) the value of k if point B is (3,k),
 - (e) the length CD.

- (b) _____[1]
- (c) _____[2]
- (d) k = [2]
- (e) <u>units [2]</u>

End of Paper-

Name: ()

Class:....

1 (a) 1:50

1 cm : 50 cm

35 cm : 50 x 35 cm

= 1750 cm

= 17.5 m

(b) 1 : 50

1 cm : 0.5m

 $1 \text{ cm}^2 : 0.25 \text{ m}^2$

 $0.25 \text{ m}^2 : 1 \text{ cm}^2$

 $250 \text{ m}^2 : 1 \times 1000 \text{ cm}^2$

 $= 1000 \text{ cm}^2$

Answer: (a) 17.5 m [1]

(b) 1000 cm² [2]

2	(a)	<u>Men</u>	burgers	hours
		7	100	2
		1	100	2x7 = 14
		5	100	$\frac{14}{5}$
		5	1	$\frac{14}{5\times100}$
		5	80	$\frac{14}{5\times100} \times 80$
				= 2.24 h

(b)
$$y = \frac{k}{x^3 - 1}$$

when $x = 2$, $y = 28$
 $28 = \frac{k}{(2)^3 - 1}$

$$28 = \frac{k}{8 - 1}$$

$$(28)(7) = k$$

$$k = 196$$

$$y = \frac{196}{x^3 - 1}$$

when x = 3

$$y = \frac{196}{(3)^3 - 1}$$

$$y = \frac{196}{26}$$

$$y = 7\frac{7}{13}$$
 or 7.54 (3 s.f)

Answer: (a) ___2.24 ____h_[2]

(b) $y = 7\frac{7}{13}$ or 7.54 (3 s.f)_[2]

3. (a)
$$2x(3-2x)+(2x+3)(7-4x)$$

= $6x-4x^2+14x-8x^2+21-12x$
= $-12x^2+8x+21$

(b)
$$(a+b)^2 = a^2 + 2ab + b^2$$

= $a^2 + b^2 + 2ab$
= $30 + 2$ (-6)
= 18

Answer: (a) $-12x^2 + 8x + 21$ [2]

(b) <u>18</u> [2]

4 (a)
$$2(ab+cd) + 4bc + ad$$

= $2ab + 2cd + 4bc + ad$
= $2ab + 4bc + 2cd + ad$
= $2b(a+2c) + d(2c+a)$
= $(a+2c)(2b+d)$

(b)
$$\frac{x^2 + 3x - 10}{x^2 - 4}$$
$$= \frac{(x+5)(x-2)}{(x-2)(x+2)}$$

Name:

Class:....

$$=\frac{(x+5)}{(x+2)}$$

Answer: (a)
$$(a+2c)(2b+d)$$
 [2]

(b)
$$\frac{(x+5)}{(x+2)}$$
 [3]

5. (a)
$$x^2 - 8x + 12 = 0$$

 $(x-6)(x-2) = 0$
 $x = 6$ or $x = 2$

$$\begin{array}{c|cccc}
x & -6 & -6x \\
x & -2 & -2x \\
x^2 & 12 & -8x
\end{array}$$

(b)
$$(2p+1)^2 = (p-2)^2$$

 $4p^2 + 4p + 1 = p^2 - 4p + 4$
 $3p^2 + 8p - 3 = 0$

$$(3p-1)(p+3) = 0$$

 $p = \frac{1}{3} \text{ or } p = -3$

Answer: (a)
$$x = 6$$
 or $x = 2$ [2]

(b)
$$p = \frac{1}{3}$$
 or $p = -3$ [2]

6. (a)
$$\frac{2x-3}{6} = \frac{x}{3y}$$

$$3y(2x-3) = bx$$

$$6xy-9y = bx$$

$$xy - bx = 9 y$$

$$x(6y-b) = 9y$$

$$x = \frac{9y}{6y-b}$$

(b)
$$m = \sqrt{\frac{2 - p^2}{np^2}}$$

$$m^2 = \frac{2 - p^2}{np^2}$$

$$m^2 np = 2 - p^2$$

$$m^2 np + p^2 = 2$$

$$p^2 (m^2 n + 1) = 2$$

$$p^2 = \frac{2}{m^2 n + 1}$$

$$p^2 = \pm \sqrt{\frac{2}{m^2 n + 1}}$$

Answer: (a)
$$x = \frac{9y}{6y - b}$$
 [2]

(b)
$$p^2 = +\sqrt{\frac{2}{m^2n+1}}$$
 [2]

7. (a)
$$\frac{c}{4c^2 - 9} + \frac{2}{2c - 3}$$

$$= \frac{c}{(2c - 3)(2c + 3)} + \frac{2}{2c - 3}$$

$$= \frac{c}{(2c - 3)(2c + 3)} + \frac{2(2c + 3)}{(2c - 3)(2c + 3)}$$

$$= \frac{c + 4c + 6}{(2c - 3)(2c + 3)}$$

$$= \frac{5c + 6}{(2c - 3)(2c + 3)}$$

(b)
$$\frac{x-2}{4} + \frac{5x+3}{3} = 8$$

Mamai

Class:....

$$\frac{3(x-2)+4(5x+3)}{12}=8$$

$$\frac{3x - 6 + 20x + 12}{12} = 8$$

$$\frac{23x+6}{12} = 8$$

$$23x + 6 = 8 \times 12$$

$$23x = 96 - 6$$

$$23x = 90$$

$$x = \frac{90}{23}$$

$$x = 3\frac{21}{23}$$
 or (3.91)

Answer (a)
$$\frac{5c+6}{(2c-3)(2c+3)}$$
 [2]

(b)
$$x = 3\frac{21}{23}$$
 [2]

8.
$$2x + 3y = 17$$
, ----(1)

$$6x - 5y = 9$$
 ----(2)

 $Eq(1) \times 3$

$$6x + 9y = 51$$
 ----(3)

$$Eq(3) - eq(2)$$

$$14y = 42$$

$$y = 3$$

Sub y = 3 into eq (1)

$$2x + 3(3) = 17$$

$$2x = 17 - 9$$

$$2x = 8$$

$$x = 4$$

Answer: x = 4 , y = 3 [3]

9

(a) \triangle ABC & \triangle ADE

ΔDEF & ΔCBF

(b)
$$\frac{BF}{EF} = \frac{BC}{ED}$$

$$\frac{BF}{4.8} = \frac{15}{8}$$

$$BF = \frac{15}{8} \times 4.8$$

$$BF = 9$$

$$\frac{AC}{AE} = \frac{BC}{DE}$$

$$\frac{AC}{10} = \frac{15}{8}$$

$$AC = \frac{15}{8} \times 10$$

$$AC = \frac{75}{4}$$

$$EC = \frac{75}{4} - 10$$

$$= \frac{35}{4}$$

$$= 8\frac{3}{4}$$

(a)

Answer: (a) _____ ΔABC & ΔADE , ΔDEF & ΔCBF _[2]

Citis itatong conver

Class:...

(b)
$$BF = 9 \text{ cm}, CE = 8\frac{3}{4} \text{ cm}$$
 [2]

10

$$(\frac{l_2}{l_1})^3 = \frac{V_2}{V_1}$$

$$(\frac{l_2}{l_1})^3 = \frac{54}{250}$$

$$(\frac{l_2}{l_1}) = \sqrt[3]{\frac{54}{250}}$$

$$=\frac{3}{5}$$

$$\frac{A_2}{A_1} = \left(\frac{l_2}{l_1}\right)^2$$

$$\frac{A_2}{A_1} = \left(\frac{3}{5}\right)^2$$

20 cm

Answers $\frac{9}{25}$ [3]

11	X	-3	0	6
	у	-4	-3	- 1

Ans: (c)
$$x = 3$$
 [1]

$$y = \underline{-2}$$
 [1]

(a)
$$4x + 5 = 2$$

 $5y = -4x + 2$
 $y = -\frac{4}{5}x + \frac{2}{5}$

Coordinates of A is $(0, \frac{2}{5})$

Class:....

- (b) Gradient = $-\frac{4}{5}$
 - (c) Gradient of $l_2 = \frac{-\frac{5}{4} 0}{0 (-5)}$ $=-\frac{1}{4}$ $l_2: y = -\frac{1}{4}x - \frac{5}{4}$
 - When x = 3, (From line l_1) (d) $y = -\frac{4}{5}(3) + \frac{2}{5}$

(e)
$$CD = \sqrt{(-\frac{5}{4} - 0)^2 + (0 - (-5))^2}$$

= $\sqrt{\frac{25}{16} + 25}$

5.15 units (3s.f)

Answers (a) $\underline{A}(\underline{0},\underline{2})$ ___[1]

(b)
$$-\frac{4}{5}$$
 [1]

(c)
$$y = -\frac{1}{4}x - \frac{5}{4}$$

(d)
$$k = -2$$
 [2]

End of Paper

Answer all the questions

- 1. (a) Given that $s^2 + 5s = t^2 + 5t$ and that $s \neq t$, find the value of $\frac{1}{5}(s+t)$. [3]
 - (b) Factorise $4m^2 28mn + 49n^2$ completely.

Hence find the value of
$$\frac{m+n}{m-n}$$
 given $4m^2 - 28mn + 49n^2 = 0$. [4]

- 2. The safe speed for a train going around a corner is directly proportional to the square root of the radius of the curve. If the safe speed for a curve of radius 64 m is 12 m/s, find the safe speed for a curve of radius 81 m. [3]
- 3. A straight line with equation $\frac{x}{a} + \frac{y}{b} = 1$ passes through the point (1, 10) and is parallel to the line y = 5x 1. Find the values of a and of b. [5]
- 4. Mrs Tan bought some fish and mutton.
 - (a) She bought x kg of fish for \$120. Write down an expression, in terms of xfor the cost of 1 kg of fish.
 - (b) She spent the same amount of money on mutton as for fish. She received 3 kg more mutton than fish. Write down an expression, in terms of x, for the cost of 1 kg of mutton that she bought. [1]
 - (c) The cost of 1 kg of fish is \$9 more than the cost of 1 kg of mutton.

 Write down an equation in terms of x and show that it reduces

 to $x^2 + 3x 40 = 0$.
 - (d) Solve the equation $x^2 + 3x 40 = 0$. [2]
 - (e) How many kilograms of fish and of mutton did she buy? [2]

[3]

A bakery shop sells various types of bread. The table below shows the cost of
 152 loaves of bread sold in a day.

Cost of bread (\$)	2.20	3.10	3.50	4.40
No. of loaves of bread sold	60	x	32	y

(a) Show that
$$x + y = 60$$
.

[1]

- (b) Given that the mean cost of bread is \$3.00, show that 3.1x + 4.4y = 212. [2]
- (c) Solve the equations in (a) and (b) simultaneously to find the values of x and y. [3]
- 6. In the diagram below, AB // PQ, BC // QR, AB = 8 cm, PQ = 10 cm and SB = 20 cm.

Given that the area of $\triangle SBC = 40 \text{ cm}^2$,

(a) prove that
$$\Delta SAB$$
 is similar to ΔSPQ ,

[2]

[2]

(c) find the area of
$$BCRQ$$
.

[2]

- 7. The diagram shows a sketch of the graph $y = 2x^2 + 4x 16$. Given that the y coordinate of the minimum point is -18,
 - (i) find the x-coordinate of the minimum point and hence state the equation of the line of symmetry. [2]

Given that P and Q are points on the graph and the coordinates of P is (1, p). The line PQ is parallel to the x-axis.

(ii) Find the coordinates of P and of Q.

[3]

NOT TO SCALE

8. Answer the whole of this question on a sheet of graph paper.

Copy and complete the table for the equation $y = -x^2 + 2x + 3$.

X	-3	-2	-1 -	0	1	2
$y = -x^2 + 2x + 3$						

[2]

- (a) Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of $y = -x^2 + 2x + 3$ for $-3 \le x \le 2$. [4]
- (b) Use your graph to find
 - (i) the maximum value of y, [1]
 - (ii) the equation of the line of symmetry, [1]
 - (iii) the value of x when y = -2. [1]

--- End of Paper ---

Mathematics

Paper 2 [50 Marks]

	Paper 2 [50 Marks]	Marks
Qns	Answers	IVIAIKS
1a	$s^{2} + 5t = t^{2} + 5t$ $s^{2} - t^{2} + 5s - 5t = 0$ $(s+t)(s-t) + 5(s-t) = 0$	M1
	$- (s-t)(s+t+5) = 0$ $s = t (rej :: s \neq t),$ $s+t+5 = 0 \implies s+t = -5$	A1
	$\therefore \frac{1}{5}(s+t) = \frac{1}{5} \times (-5)$ $= -1$	A1
b	$\begin{vmatrix} 4m^2 - 28mn + 49n^2 \\ = (2m)^2 - 2(2m)(7n) + (7n)^2 \end{vmatrix}$	M1
	$=(2m-7n)^2$	A1
	$If 4m^2 - 28mn + 49n^2 = 0$	
	$(2m-7n)^2=0$	
	2m = 7n	
	$m = \frac{7}{2}n$	M1
	$\therefore \frac{m+n}{m-n} = \frac{\frac{7}{2}n+n}{\frac{7}{2}n-n}$	
	$=\frac{\frac{9}{2}n}{\frac{5}{2}n}$	
	$=\frac{9}{5} \text{ or } 1\frac{4}{5}$	A1
2	$speed \propto \sqrt{radius}$	B1
	$S = K\sqrt{r}$	DI
	If $r = 64cm$, $s = 12 m/s$,	
	then $12 = K\sqrt{64}$,	
	$K=\frac{3}{2}$	A1
	When $r = 81cm$,	
	then $S = \frac{3}{2} \times \sqrt{81}$	
	$= 13.5 \frac{m}{s}$	A1

Mathematics

3	$\frac{1}{a} + \frac{10}{b} = 1 (1)$	M1
		IVII
	$\left \frac{x}{a} + \frac{y}{b} \right = 1$	
	$\begin{vmatrix} a & b \\ bx + ay = ab \end{vmatrix}$	
	$y = -\frac{b}{a}x + b$	M1
	b (2)	M1
	$\therefore -\frac{1}{a} = 5 (2)$	1411
	$y = -\frac{b}{a}x + b$ $\therefore -\frac{b}{a} = 5 (2)$ $From(2), b = -5a (3)$	
	Sub(3) int $o(1)$:	
	$\frac{1}{a} + \frac{10}{-5a} = 1$	
	$\frac{1}{a} - \frac{2}{a} = 1$	
	$\begin{bmatrix} a & a \\ a & a \end{bmatrix}$	
	$-\frac{1}{a} = 1 \Rightarrow a = -1$	
	i e e e e e e e e e e e e e e e e e e e	A1
	$Sub \ a = -1 \operatorname{int} o \ (3) : b = 5$	A1
4a	<u>\$120</u>	A1
	X	
b	\$120	A1
С	x+3	
	$\frac{120}{x} - \frac{120}{x+3} = 9$	M1
	$\begin{vmatrix} x & x+3 \\ 120(x+3)-120x = 9x(x+3) \end{vmatrix}$	M1
	$120x + 360 - 120x = 9x^2 + 27x$	
	$9x^2 + 27x - 360 = 0$	A1
	$x^2 + 3x - 40 = 0$	
d	$x^2 + 3x - 40 = 0$	
	$(x+8)(x-5) = 0$ $\therefore x = -8 \text{ or } 5$	
	$\therefore x = -8 \text{ or } 5$	A1, A1
	·	71,71
е	She bought 5 kg of fish and 8 kg of mutton.	A1, A1
E o	(0) 150	
5a	60 + x + 32 + y = 152	A1
	$\therefore x + y = 152 - 92 = 60$	
b	$\frac{2.20 \times 60 + 3.10 \times x + 3.50 \times 32 + 4.40 \times y}{= 3.00}$	M1
	152	144
	132 + 3.10x + 112 + 4.40y = 456	M1
	3.1x + 4.4y = 456 - 132 - 112 = 212	

Mathematics

С	x + y = 60	
C	3.1x + 4.4y = 212(2)	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1
	(2)-(3): 1.3y=26	·
	y = 20	A1
	Sub $y = 20$ int $o(1)$: $x = 40$	A1
6a	$\therefore AB // PQ$, corr. $\angle s$ are equal,	
	$\angle SAB = \angle SPQ$	M1
	$\angle SBA = \angle SQP$,	M1
	$\angle ASB = \angle PSQ (common \ \angle)$	
	[Any two pairs of angles]	
	$\therefore \Delta SAB \text{ is similar to } \Delta SPQ$	
b	$\frac{AB}{AB} = \frac{SB}{AB}$	
	$\frac{1}{PQ} = \frac{1}{SQ}$	
	8 20	M1
	$\frac{1}{10} = \frac{20 + BQ}{20 + BQ}$	• • • • • • • • • • • • • • • • • • •
	4(20 + BQ) = 100	
	20 + BQ = 25	
	BQ = 5 cm	A1
С	∴ BC // QR	
1	$\therefore \frac{20}{}=\frac{SC}{}$	
	5 CR	
	$\frac{20}{20} = \frac{20}{20} = \frac{4}{20}$	
	20 + 5 25 5	
	Area of $\triangle SBC = (4)^2$	
	${Area\ of\ \Delta SQR} - \left({5}\right)$	-
	40 16	M1
	$\frac{1}{40 + Area of BCRQ} = \frac{1}{25}$	
	$125 = 80 + 2 \times Area \ of \ BCRQ$	
	:. Area of $BCRQ = \frac{125-80}{2} = 22.5 \text{ cm}^2$	A1
7(i)	When $y = -18$,	
	$-18 = 2x^2 + 4x - 16$	
	$\begin{vmatrix} -16 - 2x + 4x - 10 \\ 2x^2 + 4x + 2 = 0 \end{vmatrix}$	
	$\begin{cases} 2x + 4x + 2 = 0 \\ x^2 + 2x + 1 = 0 \end{cases}$	
	$\int (x+1)^2 = 0$	
	x = -1 Line of symmetry: $x = -1$	A1
		A1

(ii)	Since $P(1, p)$ is on the graph,	
	$p = 2 \times 1^2 + 4 \times 1 - 16$	
	$\begin{vmatrix} p-2 \times 1 & +4 \times 1 - 10 \\ = -10 \end{vmatrix}$	
	$\therefore P(1,-10)$	•
		A1
	Since $PQ//x - axis$, so the coordinates of point $Q(x, -10)$,	M1
ļ.	$-10 = 2x^2 + 4x - 16$	(ecf 1)
	$2x^2 + 4x - 6 = 0$, ,
!	$x^2 + 2x - 3 = 0$	
	(x+3)(x-1)=0	
	$\therefore x = -3 \text{ or } 1 \text{ (po int } P)$	
	$\therefore Q(-3,-10)$	A1
		, · ·
8a	x -3 -2 -1 0 1 2	All correct: A2
	$y = -x^2 + 2x + 3$ -12 -5 0 3 4 3	1/2 wrong: A1
		≥ 3 wrong: 0
İ	·	Ŭ
	4 +	
	(0,3)	0I Ad
	2 x=1	axes & scale: A1 smooth curve: A2
	6 (4)	label the eqn: A1
		'
	(1.45, -2)	
	/ \ · ·	
	(2,5)	
	/ ·• \ _	
	/ \	
-		
	(3,-12)	
	.14	
	1	
F (:)		
b(i)	Max value of $y = 4$.	A1
(ii)	Eqn of line of symmetry: $x = 1$. When $y = -2$, $x = -1.45$	A1
("").	y = -2, x = -1.43	Range: -1.4 to -1.5 A1
		1.7 10-1.3 AT